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A linear stability theory for dune and antidune formation is presented that implements
a rotational two-dimensional flow model. As in previous linear theories, the phase-
lag between sediment transport and bed elevation remains the main mechanism
driving instability. However, it is shown that this phase-lag varies significantly in a
neighbourhood of the bed. Moreover, since the layer in which sediments are moving
has a finite (though small) thickness, it is assumed that the perturbations of the fluid
stress driving bedload transport should be evaluated at the top of the layer itself. It
is shown that such an apparently minor modification of the classical approach alters
remarkably the balance between stabilizing and destabilizing effects that drives the
instability process. This also allows a clarification of the debated role of bedslope
on the formation of dunes and antidunes. Following the above ideas, antidunes are
shown to form in the absence of suspended sediment load and without any effect
associated with sediment inertia. The present analysis ultimately allows a successful
unification of the theories of dune and antidune formation.

1. Introduction
Forty years ago, Kennedy (1963) published his seminal paper on the mechanism

of formation of dunes and antidunes in erodible channels. The real breakthrough
of this work, further assessed in Kennedy (1969), was undoubtedly to show that
bedforms can be interpreted as periodic perturbations of the shape of the river bed
that interact with the flow, creating a dynamic system that can experience temporal
growth or decay according to an instability mechanism.

Coupling a suitable flow model to the continuity equation for the sediment phase,
several researchers were able to apply this concept to the study of bedforms of
different scales and spatial patterns, making use of techniques developed in the field
of hydrodynamic stability. The impact on the newborn field of morphodynamics was
striking. Dunes, antidunes and fluvial ripples were investigated by means of linear
stability analyses by, among others, Engelund (1970), Hayashi (1970), Fredsøe
(1974), Richards (1980), Engelund & Fredsøe (1982) and Sumer & Bakioglu (1984),
soon followed by bars (Callander 1969), meanders (Ikeda, Parker & Sawai 1981;
Blondeaux & Seminara 1985), and also, more recently, by ridges (Tsujimoto 1989;
Colombini 1993) as well as streaks (Colombini & Parker 1995) and sorting waves
(Seminara, Colombini & Parker 1996).

All these analyses claim to be able to predict the existence of unstable regions in
the parameter space, together with the wavelength of the most unstable disturbance,
assumed to be the one that will eventually prevail during the amplification process.
In general, the agreement of theoretical predictions with experimental observations is
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fairly good, thus showing that the basic mechanism of bedform formation is indeed
an instability mechanism.

A simple glance at the linearized form of the Exner’s equation (see § 4) reveals
that if the local sediment transport rate is exactly in phase with bed elevation,
no amplification of bed perturbation is obtained. The phase-lag between sediment
transport and bed topography is therefore the actual mechanism of instability. Several
effects contribute to this lag, bed evolution being ultimately due to a subtle balance
between stabilizing and destabilizing effects, among the latter bed friction being the
most effective.

In the formulation of the linear stability analysis of bedforms an essential role is
played by the flow model, which is responsible for the evaluation of the bed shear
stress that, in turn, drives the bed evolution. On the basis of the flow model used,
existing linear stability theories for dunes and antidunes can be grouped into three
main categories: potential flow (Kennedy 1963; Parker 1975; Coleman & Fenton
2000), shallow-water (Gradowczyk 1970) and rotational solutions (Engelund 1970;
Smith 1970; Fredsøe 1974; Richards 1980). Depending on the flow model used, the
bed shear stress can or cannot lag the bed profile. In this regard, the choice of the
flow model becomes crucial. Potential flow analyses (with the notable exception of
Coleman & Fenton (2000), whose contribution will be briefly discussed in the final
section) produce no lag, while shallow-water theories invariably predict stability of a
uniform steady flow. Rotational flow models provide the most accurate description
of the linearized bed shear stress distribution.

On the sediment transport side, sediment suspension (Fredsøe 1974) or particle
inertia (Parker 1975) are known to introduce some delay in the response of sediment
transport to the driving action of the flow, ultimately resulting in a lag between
the sediment discharge and the flow itself. Finally, when only bedload transport is
considered, gravity favours the downhill motion of the grains and conversely opposes
the uphill motion, again producing a (stabilizing) lag.

Once all the necessary ingredients are inserted in a linear stability analysis of
dune and antidune formation, a clear picture of the mechanism that drives the
instability process should emerge. In this regard, none of the existing theories is
entirely satisfactory, as it will be shown in the following.

In the present contribution, a rotational and linear stability model of plane flow
over an erodible bed is formulated. We show that a crucial contribution to the lag
is related to the level at which the shear stress driving bed evolution is evaluated.
More precisely, following the current saltation models of bedload transport, the shear
stress is evaluated at the interface between the flowing fluid and the saltation layer
where grains participate in the bedload transport process. What could be considered
as a minor modification of the analysis, due to the small thickness of the bedload
layer, is found to alter remarkably the resulting stability plot. In particular, it turns
out that antidune formation neither necessarily requires the presence of transport in
suspension nor the effect of particle inertia. Some light is also shed on the debated
role of gravity in the dune regime and ultimately a unified view of the process of
dune and antidune formation is obtained.

The rest of the paper proceeds as follows. In § 2 and § 3 the system of equations
describing the flow and the sediment transport models respectively are presented. In
the latter section the level at which the Shields stress should be evaluated is also
considered. In § 4 the resulting system of equations is linearized with respect to small
periodic longitudinal disturbances. Results from the present theory are presented in
§ 5, while the last section is devoted to some concluding remarks.
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Figure 1. Sketch of the flow configuration.

2. Formulation of the problem: the flow model
In the framework of the well-established quasi-steady assumption, which exploits

the considerable difference between the characteristic timescales of flow and bed
evolution, the flow is assumed to adapt instantaneously to changes in bed elevation.

We then consider steady turbulent free-surface flow of an incompressible fluid
of density ρ in a wide straight channel. Hereafter a star superscript will denote
dimensional quantities. We denote by D∗, U ∗, Fr, S the uniform values of flow depth,
depth-averaged speed, Froude number and slope of the channel respectively. The
friction velocity u∗

f and the depth-averaged velocity for the uniform flow are related
to the slope and Froude number by the following law, which defines the friction
coefficient C:

C =
u∗

f

U ∗ =
S1/2

Fr
. (2.1)

The Reynolds equations in dimensionless form then are

UU,x + V U,y + P,x − 1 − Txx,x − Txy,y = 0, (2.2a)

UV,x + V V,y + P,y + S−1 − Txy,x − Tyy,y = 0, (2.2b)

U,x + V,y = 0, (2.2c)

where U =(U, V ) is the local velocity vector averaged over the turbulence, P is the
mean pressure and T= {Tij } is the two-dimensional Reynolds stress tensor. Variables
have been made dimensionless using the friction velocity u∗

f , the depth D∗ of the
unperturbed uniform flow and the fluid density ρ.

We refer to a Cartesian coordinate system (x, y) such as the one sketched in figure 1.
The curves y = R(x) + D(x) and y = R(x) identify the upper and lower boundaries of
the flow domain respectively, so that D represents the local flow depth. Furthermore,
we stipulate that the latter boundary is set at the reference level, the level at which
conventionally the mean logarithmic profile vanishes. The above system is solved with
the boundary conditions of vanishing shear stress at the free surface and of vanishing
velocity at the lower boundary.

The transformation of variables

η =
y − R(ξ )

D(ξ )
, ξ = x, (2.3)

is then employed, which maps the channel sketched in figure 1 into a rectangular
domain.

In order to close the above formulation we employ a Boussinesq-type assumption:

Tij = νT (Ui,j + Vj,i). (2.4)
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For the evaluation of the eddy viscosity νT , a formulation in terms of a mixing length
is adopted:

νT = l2U,y, l = DL(η), L(η) = κ(η + ηr )(1 − η)1/2, (2.5)

where κ is the Kármán constant.
An alternative formulation for the eddy viscosity, based implicitly on the value

of the friction velocity at the reference level, has also been considered, showing a
tendency to slightly overestimate the intensity of the bed shear stress perturbation. The
mixing-length approach (2.5) has thus been chosen to produce the results presented
herein.

In (2.5), the quantity ηr , which sets the value of the mixing length at the reference
level, is the non-dimensional distance between the reference level and the local value
of the mean bed elevation and is related to bed roughness.

Restricting our attention to the simple case of a uniform flow over a flat bed
composed of well-packed spheres of non-dimensional diameter ds , sketched in
figure 2(a), the law of the wall can be written as

U =
1

κ
ln

(
y

ks

)
+ K =

1

κ
ln

(
y

yr

)
, (2.6)

where ks is the the non-dimensional roughness height.
The quantity yr can thus be estimated, by simple comparison, as a function of the

constant K . The universally accepted value of 8.5 for K leads to a value of yr that
is about one thirtieth of the roughness height, which in turn can be estimated as 2.5
times the grain size, leading to yr = ds/12.

Moreover, the origin of the vertical axis is set at the average bed level, which is at
a distance of ds/6 below the top of the grains. Hence, the reference level is inside the
roughness elements, and the logarithmic profile expressed by (2.6) cannot be thought
as representative of the real velocity profile in a region which is of the order of the
sediment diameter.

3. Formulation of the problem: the sediment transport model
As far as bed dynamics is concerned, only bedload transport is considered herein

and a new formulation is introduced that deserves some introductory arguments.
In the work of Bagnold (1956), which can be considered as the first mechanistic

approach to sediment transport, “the rate of work done in pushing the bedload along
the bed against frictional resistance” was related to “the power in the flow available
to move the sediment”, leading to a relationship between the sediment discharge per
unit width and the bed shear stress. Bagnold’s idea can be easily explained in term
of a conceptual experiment like the one presented in figure 2.

Suppose we have a uniform flow above a fixed bed of homogeneous roughness as
sketched in figure 2(a), where the behaviour of the shear stress in the neighbourhood
of the bed is also shown. Note that the shear stress reaches its maximum τr at the
reference level R, which is situated slightly below the top of the grains. As already
mentioned, this situation is not physically representative in the neighbourhood of
the grains but simply fits the value of the constant K for the logarithmic profile of
velocity expressed by (2.6).

In Bagnold’s ideal experiment, as shown in figure 2(b), we now allow the bed
to suddenly become cohesionless, feeding, into the same time, sediments into the
upstream section. Moreover, we stipulate that sediments are fed at a rate that exactly
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Figure 2. Sketch of the sediment transport model: (a) a fixed bed; (b) a cohesionless bed.

balances the flow capacity to transport sediments, whatever this capacity might be.
If only bedload transport is allowed, as assumed herein, we know that sediments
move by small jumps (saltation) confined in a region close to the bed defined as
the ‘bedload’ or ‘saltation’ layer. Since the average bedload discharge is uniform,
again the average bed surface experiences neither aggradation nor degradation or,
more precisely, erosion and deposition rates statistically balance each other. Above
this bedload layer we have clear fluid in uniform motion, such that the shear stress
distribution is identical to that depicted in figure 2(a). We define the top of the
bedload layer as B and the shear stress at this level as τb.

Inside the bedload layer, the shear stress drops, this reduction being representative,
from an energy point of view, of the power spent by the flow in moving the sediments.
Whether such a reduction leads the external stress τb to decrease down to the critical
value τc, as Bagnold suggested, or to a somewhat higher value as recently pointed
out (Seminara, Solari & Parker 2002) is irrelevant in the present context.

According to the above ideas, the shear stress exerted by the fluid on the sediments
moving in the bedload layer should be evaluated at level B . In other words, it is the
stress τb and not the stress τr which should be used to estimate the bedload discharge.
Due to the small thickness of the bedload layer, the difference in modulus between τb

and τr is typically so small that it can safely be neglected. Nonetheless, it will appear
that the phase of the shear stress relative to bed elevation, which drives the instability
process, varies significantly in the neighbourhood of the reference level, so that this
assumption can lead to incorrect predictions when the vertical structure of the flow,
as in the case of dunes, is used for the determination of the transporting shear stress.

A new parameter is then introduced in the analysis, namely the thickness of the
bedload layer under uniform flow conditions hb, which can be safely set to be
proportional to the non-dimensional grain size ds:

hb = lbds. (3.1)

Hence, hb identifies the position of the interface that separates the upper clear-water
layer from the lower bedload layer, in which the two-phase (sediment and water)
flow is confined. In the above two-layer formulation it is implicitely assumed that
the clear-water flow is unaffected by the presence of the bedload layer and that the
sediment discharge that takes place in the latter is uniquely determined by the shear
stress exerted by the fluid on the interface and by the sediment characteristics. This
formulation, which constitutes the basis for most of the movable-bed models available
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Figure 3. Dimensionless maximum saltating height versus τ/τc . Experiments: �, Sekine &
Kikkawa (1992); �, Lee & Hsu (1994); �, Niño, Garcia & Ayala (1994); �, Niño & Garcia
(1998); solid line is (3.2) with Ab = 1.3 and m = 0.55.

in the literature, establishes the simplest possible link between flow and bed dynamics:
a modification of bed elevation drives a modification of the fluid flow, which produces
a change in the shear stress at the interface and then in the local transport capacity,
which in turn modifies bed elevation. A more detailed analysis of the two-phase flow
that takes place close to the bed and of the saltating grain dynamics will undoubtely
provide a more refined description of the complex sediment–water interactions that
ultimately drive bed evolution. Although crude, however, the two-layer formulation
adopted herein seems able to grasp at least the main features of the mechanism of
bedform formation.

In figure 3, some experimental observations of lb are shown as a function of the
ratio of the bed shear stress and its critical value. It can be seen that the experimental
points show a consistent trend, even though some scatter is present, expecially for
low values of the bed shear stress, i.e. close to the threshold of motion. It must be
noted that there is some uncertainty in the definition of the saltation height in the
various experiments. In fact, as Sekine & Kikkawa (1992) pointed out, the “averaged
saltation height” can be defined either as “the ensemble average of the maximum
saltation height over an entire step length”, providing experimental measurements of
the thickness of the saltating bedload layer hb, or as “the averaged elevation above
the bed of a saltating grain”, the latter being clearly lower than the former.

On the basis of the experimental observations, it turns out that lb is an increasing
function of the bed shear stress, which can be written in the form

lb = 1 + Ab

(
τr − τc

τc

)m

, τr � τc. (3.2)

In the following, the value of the constant Ab and of the exponent m have been set
equal to 1.3 and to 0.55 respectively, on the basis of a regression analysis on the
experimental data of Sekine & Kikkawa (1992) and of Lee & Hsu (1994), which
are shown as open and solid circles in figure 3, respectively. The above evaluation
of the exponent m is confirmed by Lee & Hsu (1994), who proposed a relationship
analogous to (3.2) with a value of m equal to 0.575 and by the simulations of Lee,
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You & Lin (2002), who proposed the value of 0.511 on the basis of a regression
analysis on computer simulated data.

The experiments of Niño & Garcia (1998) and of Niño, Garcia & Ayala (1994)
exhibit a much weaker dependence of the saltating height on the ratio τb/τc. Apart
from the above-mentioned uncertain definition of the measured quantity, this may
also be due to the role of the particle Reynolds number, which has been neglected in
(3.2).

Under the above assumptions, the Exner equation of sediment mass conservation,
can be written as

B,t = −Φ,x, (3.3)

where Φ is the dimensionless sediment discharge per unit width,

Φ =
q∗

s

d∗
s

√
(s − 1)gd∗

s

, (3.4)

and time has been made non-dimensional using the sediment characteristic slow
timescale

t̂ =
D∗2(1 − λp)

d∗
s

√
(s − 1)gd∗

s

. (3.5)

In the above equations, g is gravitational acceleration while d∗
s , s and λp are diameter,

relative density and porosity of the sediment, respectively.
In order to close the problem, a suitable relationship between the sediment

discharge Φ and the flow must be introduced. Several formulations for the function
Φ are available in the literature, all exhibiting a dependence by some power on a
dimensionless form of the shear stress acting on the bed, known as the Shields stress θb:

θb =
τ ∗
b

ρ(s − 1)gd∗
s

. (3.6)

Results of the linear stability theory are only moderately affected by the choice
of a particular form of the function Φ . In the following, the Meyer-Peter & Müller
formula

Φ = 8(θb − θc)
3/2 (3.7)

has been employed, where θc is the critical Shields stress for incipient motion.
Finally, when only bedload transport is considered, as in the present case, gravity

favours the downhill motion of the grains and conversely opposes the uphill motion.
Following Fredsøe (1974), this effect has been accounted for by modifying the critical
Shields stress θc in the form

θc = θch − µ(S − B,x ), µ =
θch

tan Ψ
, (3.8)

where θch has been set equal to the conventional value for a horizontal bed (0.047)
and Ψ is the friction angle. An appropriate estimate for µ is about 0.1 (Fredsøe 1974).

4. Linearization
We now assume the following normal-mode representation for the generic perturbed

property F :

F (ξ, η, t) = F0(η) + εF1(ξ, η, t), (4.1a)

F1(ξ, η, t) = f (η) exp[i(αξ − Ωt)] + c.c. (4.1b)
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with the parameter ε chosen to be small in accordance with the assumption of small
perturbations of the uniform configuration. In the above, α is the wavenumber of the
perturbation, Ω the complex growth rate and c.c. stands for the complex conjugate
of the preceding quantity.

The above expansion can then be substituted into the governing equations, boundary
conditions and closure assumptions to obtain a sequence of problems at the various
orders of approximation in the small parameter ε. We skip the details of this procedure,
which is tedious but standard, and simply show the main results.

4.1. O(ε0)

At leading order the system of differential equations and boundary conditions for the
basic uniform flow can be rewritten as

T ′
t0 = −1, T ′

n0 = −S−1, (4.2)

U0|η=0 = 0, Tt0|η=1 = 0, Tn0|η=1 = 0, (4.3)

where

Tt0 = νT 0U
′
0, Tn0 = −P0 (4.4)

are the stresses tangential and normal to surfaces at constant η respectively and
primes denote differentiation with respect to η.

Linearization of the eddy viscosity relationship (2.5) leads to

νT 0 = l20U
′
0, l0 = L = κ(η + ηr )(1 − η)1/2. (4.5)

The above system immediately integrates to yield

U0 =
1

κ
ln

(
η + ηr

ηr

)
, P0 = S−1(1 − η), (4.6)

i.e. the classic rough logarithmic law for the velocity and the hydrostatic distribution
for pressure.

By comparison with (2.6) we easily find that the quantity ηr is identical to yr so
that

R0 = ηr =
ks

30
=

ds

12
. (4.7)

Integrating the vertical profile of velocity once more, we obtain

U0 =
U ∗

u∗
f

=
1

C
=

1

κ

[
ln

(
1 + ηr

ηr

)
− 1

]
, (4.8)

which relates the friction coefficient C to ηr .
Exner’s equation (3.3) does not produce any additional information at the leading

order since under uniform flow conditions the bed experiences neither aggradation
nor degradation. It is worth mentioning that

ηb = B0 − R0 =
ds

12
+ hb, (4.9)

where hb is the thickness of the bedload layer introduced in § 3. The quantity ηb thus
represents the non-dimensional distance between level B and level R. Moreover, the
following relationships hold:

θb0 = θr0(1 − ηb), θr0 =
C2Fr2

(s − 1)ds

=
S

(s − 1)ds

, (4.10)
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so that enforcing ηb = 0 corresponds to evaluate the bed shear stress at the reference
level R.

4.2. O(ε1)

It is convenient to introduce the new variables

Tt = νT 0

(
u′ − U ′

0d + iαv +
νT

νT 0

U ′
0

)
, Tn = −p − 2iανT 0u, (4.11)

which represent the amplitudes of the perturbed stresses tangential and normal to
surfaces at constant η, respectively. In the above u, v are the longitudinal and vertical
components of the perturbed velocity, while p and d are the amplitudes of the pressure
and flow depth perturbation. Finally, the ratio νT /νT 0 follows from the perturbation
of (2.5):

νT

νT 0

=
u′

U ′
0

+ d. (4.12)

After some manipulations, a system of ordinary differential equations is eventually
obtained that can be written in the general form

LZ = dD + rR, (4.13)

where d is considered as a parameter to be determined and r represents the amplitude
of the perturbation of the reference level. The vector Z of the unknowns is

Z = (u, v, Tt , Tn)
T . (4.14)

The linear differential operator L in (4.13) is

L =




d/dη iα/2 −1/(2νT 0) 0

iα d/dη 0 0

−iαU0 − 4α2νT 0 −U ′
0 d/dη iα

0 −iαU0 iα d/dη


 , (4.15)

while the vectors D and R are, respectively,

D =




0

iαU ′
0η

(−iαU0U
′
0 + iαS−1 − 2α2(1 − η))η − 1

S−1 + iαη − 2iα(1 − η)


 (4.16)

and

R =




0

iαU ′
0

−iαU0U
′
0 + iαS−1 − 2α2(1 − η)

iα


 (4.17)

Linearization of the boundary conditions yields the vanishing of u and v at the
reference level (η = 0), while at the free surface (η = 1) we have

v = iαU0(r + d), Tt = 0, Tn = 0. (4.18)

Linearity of the differential system allows us to express its solution in the form

Z = c1Z1 + c2Z2 + dZd + rZr. (4.19)
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Thus Z is a linear combination of two linearly independent solutions of the
homogeneous initial value problem

LZ1,2 = 0, (4.20)

each satisfying the boundary conditions at the lower boundary, plus particular
solutions of the non-homogeneous differential systems

LZd = D, LZr = R, (4.21)

again satisfying the lower boundary conditions.
Using the splitting (4.19) on the boundary conditions at the free surface (4.18), a

linear 3 × 3 non-homogeneous algebraic system in the three unknowns c1, c2 and d is
found, the solution of which is proportional to r . We then readily obtain

(c1, c2, d, r)T = r(Ttr , Tnr , D, 1)T = rX, (4.22)

where the two linearly independent solutions of the homogeneous problem (4.20)
have been chosen so that the unknowns c1 and c2 are the values of the perturbation
of the tangential and normal stress at the reference level, respectively. The vector X
thus provides the ‘forced’ response of the flow to a unit reference level perturbation.

Linearization of the sediment continuity equation yields the following equation:

Ωb = αφ, (4.23)

where b is the amplitude of the perturbation of the active layer thickness, which is
identical to r since B and R are both proportional to the uniform sediment grain
diameter and thus kept at a constant distance from one another, ‘moving’ together as
the bed evolves.

The amplitude φ of the perturbation of the bedload discharge Φ defined by (3.7)
can be expanded as in (4.19), leading to

φ = (φ1c1 + φ2c2 + φdd + φrr) = φ · (c1, c2, d, r)T = φ · Xr, (4.24)

where

φ1 =

[
∂Φ

∂c1

]
0

=

[
∂Φ

∂θb

∂θb

∂c1

+
∂Φ

∂θc

∂θc

∂c1

]
0

=

[
∂Φ

∂θb

]
0

[
∂(θb − θc)

∂c1

]
0

(4.25)

and the suffix 0 stands for ‘evaluated at base condition’. Analogous relationships hold
for φ2, φd and φr .

Expanding also the perturbed shear stress Ttb as in (4.19) we then readily obtain

φ = A

(
Ttb1, Ttb2, Ttbd + ηb, Ttbr − iα

µ

θr0

)T

, (4.26)

where Ttb1, Ttb2, Ttbd and Ttbr are evaluated at ηb and

A =

[
∂Φ

∂θb

]
0

θr0, (4.27)

Making use of (4.24) and (4.26), we can rewrite (4.23), obtaining the dispersion
relationship

Ω = αφ · X, (4.28)

and solving for the imaginary part of the growth rate we finally obtain

Ωi = α2A

(
T i

tb + ηbD
i

α
− µ

θr0

)
, (4.29)
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Figure 4. Growth rate plot: comparison of the results of the present theory with the
experiments of Guy et al. (1966): �, dunes; �, antidunes.

which clearly shows how instability is related to a balance between destabilizing and
stabilizing effects. In fact, the first term on the right-hand side of (4.29) is associated
with the action of the tangential bed shear stress so that instability is found when
it lags behind dune crests (i.e. when its imaginary part is positive); on the contrary,
the second term, which is associated with the action of gravity, always acts to reduce
instability. The reader will note that, on letting ηb vanish, Ttb becomes equal to Ttr and
the formulation of classic linear theories (Fredsøe 1974; Richards 1980) is recovered.

5. Discussion of the results
We now move to the results obtained in the framework of the linear theory described

in the previous section. Figure 4 shows a comparison of the result of the present
model with the experiments of Guy, Simons & Richardson (1966) as reported by
Fredsøe (1974). The parameters of the simulation are the same as in the analysis
presented in the latter paper (i.e. C−1 = 20, µ = 0.1). Growth rate is shown in shades
of grey, lighter colours corresponding to higher values.

Two regions of instability appear, which are bounded by the marginal curves
(vanishing growth rate) represented as thick solid lines in the plot. The broken white
lines are the curves of vanishing celerity and delimit three regions in the plot: below
the lower curve and above the upper curve, wave celerity is positive (downstream
migration) while it is negative (upstream migration) in the region bounded by the
two curves. Moreover, all the unstable disturbances lying above the lower broken line
are characterized by a phase-lag between the free surface and the bed elevation of
less than π/2 in modulus (antidunes) while the opposite is true for disturbances lying
below the line (dunes).

The agreement with the experimental data is fairly good: almost the whole set
of measurements, for both dune and antidunes, falls inside the appropriate region
of instability, grouping along the lines of maximum amplification (dotted lines).
Dunes are found to always migrate downstream while antidunes migrate mostly
upstream, even though the upper curve of vanishing celerity crosses the marginal
curve for antidune instability, hence allowing downstream migrating antidunes at
larger Froude numbers.
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Figure 5. Growth rate in the (Fr,α)-space: (a) Ωi = Aα2(T ), ηb = 0; (b) Ωi = Aα2(T + P ),
ηb = ds/12+ hb; (c) Ωi = Aα2(T + P ), ηb = ds/12+ hb/2. Experiments of Guy et al. (1966): �,
dunes; �, antidunes.

It is interesting at this point to investigate in more detail the effects of the key
assumption presented in § 3 concerning the level at which the bed shear stress must
be evaluated. In order to make this dependence explicit, it is useful to rewrite (4.29)
as follows:

Ωi = α2A(T + P − G), (5.1)

where

T =
T i

tr

α
, P =

T i
tb + ηbD

i − T i
tr

α
, G =

µ

θr0

. (5.2)

If only the term T is considered in the analysis (i.e. if the bed shear stress is
evaluated at the reference level and the effect of gravity is neglected) the growth rate
plot shown in figure 5(a) is obtained. The values of the parameters are the same as
in figure 4.

Note that, when a rotational flow model is adopted, we are faced with a somewhat
reversed problem with respect to the potential-flow formulation: the destabilizing term
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associated with the phase-lag of the bed shear stress is so intense that it becomes
difficult to stabilize it in the short-wavelength range, a necessary condition to obtain
realistic predictions for dune and antidune wavelengths.

In the dune regime, Fredsøe (1974) provided a realistic comparison with
experimental data on dune wavelength. In that case, the effect of gravity was included
in the formulation on the basis of available treatments of the effect of bedslope on
bedload transport (i.e. using (3.8)), but the flow model employed was based on a
slip velocity approach, known to sharply underestimate the bed shear stress. When a
more refined flow model was adopted (Richards 1980), the intensity of the stabilizing
effect associated with gravity had to be at least an order of magnitude larger than
that assumed by Fredsøe (1974), an unjustified and unrealistic assumption.

In the antidune regime, all previous theories agree on the fact that gravity should
play a minor role, so that other stabilizing effects have been invoked such as the
presence of suspended load (Engelund & Fredsøe 1974). In this regard, we should
point out that antidunes are easily observed both in nature and in the laboratory
in the absence of suspended load. Particle inertia provides, in this regime, a further
destabilizing effect, so that its inclusion does not lead to any damping.

If the new term P , which accounts for evaluating the bed shear stress on the top of
the active layer, is included in the analysis, the growth rate plot changes remarkably as
shown in figure 5(b). A comparison with figure 5(a) shows that the instability regions
for both dunes and antidunes are now much more consistent with the experimental
observations. Note that the only difference between the two formulations lies in the
assumption of a finite (though small) rather than negligible thickness of the bedload
layer. In order to estimate the sensitivity of the model to the bedload layer thickness
hb, its value has been arbitrarily halved, producing the plot presented in figure 5(c).
While an overall damping in the short-wavelength range is clearly detectable also in
this plot, the agreement with the experimental observations is poorer. This indirectly
confirms that the evaluation of hb through (3.1) and (3.2) provides the best description
of the sediment transport dynamics, at least in the formulation adopted in the present
work.

Figure 6 shows the behaviour of the real and imaginary parts of the perturbation
of the tangential shear stress in a neighbourhood of the reference level for several
values of the Froude number. The vertical coordinate is scaled with the thickness
of the bedload layer and the value of the wavenumber is set equal to 1. Inside the
bedload layer the real part of the perturbation, which is associated with the celerity
of the sand wave, is only slightly modified. On the contrary, the imaginary part, which
is associated with the growth or decay of the perturbation, changes remarkably, so
that disturbances that are stable at the reference level become unstable at the top
of the saltation layer and vice versa. Note that the latter variation is particularly
strong in the dune regime, where the bedload layer is just a few grain diameters
thick.

It should be pointed out that the shaded areas in the plots represent the region
occupied by the bedload layer, but the flow solution shown is relative to the case of
clear-water flow. Under the assumption that the flow above the layer is unaffected by
the presence of the layer itself, which is implicit in the two-layer formulation adopted,
this allows the determination of the phase-lag that ultimately drives bed evolution.

Expanding in Taylor series the imaginary part of the perturbed tangential stress Tt

in a neighbourhood of the reference level we readily obtain

αP = T i
tb + ηbD

i − T i
tr =

(
T i

tr,η + Di
)
ηb = −α

(
T r

nr − S−1
)
ηb = P i

r,xηb, (5.3)
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Figure 6. (a) Real and (b) imaginary parts of the amplitude of the shear stress perturbation as
a function of vertical distance in the neighbourhood of the reference level; α = 1: �, Fr = 0.5; �,
Fr = 0.6; �, Fr = 0.7; �, Fr = 1; �, Fr =1.1; �, Fr = 1.2.

where Pr,x represents the perturbation of the longitudinal pressure gradient evaluated
at the reference level. The physical mechanism which leads to the appearance of
the term P is then found in terms of a simple force balance for a fluid particle
located close to the reference level: the longitudinal pressure gradient generated by
the perturbation in bed elevation acts to modify the tangential shear stress when
moving away from the bed.

Finally, if the effect of gravity is also included in the analysis, the growth rate
plot shown in figure 4 is obtained (µ = 0.1). A direct comparison with the analogous
figure 5(b), where the effect of gravity was neglected, shows that gravity is relevant
only for small values of the Froude number (Fr � 0.4). It may be worth noting that
gravity should indeed play a minor role in the antidune regime as already pointed
out by Fredsøe (1974).

6. Conclusions
The present revisiting of the linear theory of sand dunes has clarified a few

of the obscure aspects of classical approaches, representing a step forward in the
understanding of the instability process that drives dune and antidune formation.

Firstly, if the bed shear stress is evaluated at the top of the bedload layer, a new
term, which is related to the role of the longitudinal pressure gradient, formally enters
the analysis. This choice is consistent with Bagnold’s approach to sediment transport.
The real part of the perturbation of the bed shear stress is almost unaffected by
this procedure while its imaginary part, which only contributes to instability, changes
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rapidly in the neighbourhood of the reference level so that the delicate balance
between destabilizing and stabilizing effects is crucially affected by this choice. This
result seems to us to be of some relevance and suggests that movable-bed models
based on three-dimensional flow solutions should account for the new hypothesis
proposed in the present paper.

Secondly, the formation of antidunes requires neither the presence of suspended
load nor the effect of sediment inertia, though both these effects may alter the stability
plot. Dunes and antidunes are shown to form in the same conceptual framework and
the wavelengths of maximum amplification predicted by the theory are in good
agreement with the experimental measurements in both regimes.

Thirdly, the stabilizing effect of gravity on bedload transport turns out to be much
less important than in previous linear theories provided that perturbations of sediment
transport are based on the above procedure.

In a recent contribution, Coleman & Fenton (2000) have shown that coupling flow
and bed evolution leads to another source of lag between sediment transport and bed
topography. Indeed, the quasi-steady flow assumption that justifies the decoupling
procedure completely rules out any mode of instability associated with the flow,
possibly leading to incomplete predictions. In fact, an unrealistic resonant behaviour,
which appears as a deep valley (the darkest area in figure 4, for example) in the
growth rate surface plots, is found in the neighbourhood of the line describing steady
flow perturbations (which is essentially coincident with the lower white dashed line
in the same figure). Preliminary calculations obtained by means of the present model
retaining time derivatives in the flow equations have shown that, even though the
unrealistic resonance disappears in the coupled solution, the shape of the unstable
regions in the parameter space is only moderately affected by the coupling. More
precisely, as in Coleman & Fenton (2000), changes are confined within a thin region
surrounding the line of steady flow perturbation. Howevver, in contrast with the
results of the above potential flow analysis, stability of the uniform flow is found by
the present rotational theory in the latter region.

Needless to say, a linear theory is unable to clarify further features related to
dune development, most importantly its ability to reach an equilibrium amplitude.
In this respect, a feature which will require attention is the role of flow separation
in the selection of dune wavelength. Whether this is able to prevail over the linear
mechanism of selection of normal-mode perturbations is a question which remains
open, even though the good agreement between the results of the present linear theory
and the experimentally observed wavelengths of finite-amplitude dunes and antidunes
is encouraging in this regard.
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